Comet C/2013 V5 (Oukaimeden): Evidence for Compositional Heterogeneity as Revealed through Infrared Spectroscopy

M. A. DiSanti (Code 693 and The Goddard Center for Astrobiology)

C/2013 V5 (Oukaimeden), 2014 Sep 14 (photo credit: D. Peach)

Collaborators/Team Members:

- B. P. Bonev (American U.),
- N. Dello Russo, R. J. Vervack (APL)
- E. L. Gibb (U. Missouri-St. Louis),
- N. X. Roth (UM-SL, grad student & PhD candidate),
- A. J. McKay (USRA-NPP/GSFC),
- H. Kawakita (Kyoto-Sangyo U.),
- A. L. Cochran (U. Texas McDonald Obs.)

Outline

- Importance of and IR platforms for studies of cometary parent volatile composition
- Our study of C/2015 V5 (Oukaimaden); evidence for nonhomogeneous composition in the nucleus
- Current/future capabilities: iSHELL at the IRTF

"Comets as Fossils" Different types of fossils

Just as dinosaur fossils tell us about Earth at earlier times ...

... comets tell us about our Solar System at earlier times

Carbon in comets

Refractory Organics (carbonaceous dust)

• Seen as continuum thermal emission, particularly at $\lambda \sim$ 3-5 µm for comets near heliocentric distance R_h = 1 AU

Volatile Organics

- Although H₂O is the dominant ice, comets also harbor a myriad of carbon-bearing ices, including PAHs
- Upon sublimation cometary ices release parent volatiles (molecules) into the coma
- The "simplest" (spectroscopically, structurally) of these are quantified using high resolution IR spectroscopy
- ➤ The fraction of carbon in each reservoir (refractory, volatile) depends on a comet's gas-to-dust ratio, and carbon versus silicon content in grains

Platforms (observatories + echelle spectrometers) available for near-IR (1-5 μ m) spectroscopy at $\lambda/\Delta\lambda$ > 1 x 10⁴

(used for our study of C/2013 V5 Oukaimeden)

- ➤ W. M. Keck (telescope 2): NIRSPEC
 - 10-m telescope, Maunakea Observatories (MKO), Hawai'i, USA
 - 1024x1024-pixels, 24 arc-sec slit length, multiple orders (cross-dispersed), $\lambda/\Delta\lambda \sim 2.5 \text{x} 10^4$, piece-wise spectral coverage per setting
 - Scheduled upgrade begins Aug 1, back on Keck2 by Dec 9 (for 46P)
- ➤ NASA Infrared Telescope Facility (IRTF): CSHELL
 - 3-m telescope, MKO
 - 256x256-pixels, 30 arc-sec slit length, single echelle order, $\lambda/\Delta\lambda \sim 2.5 \text{x} 10^4$, limited spectral coverage per setting
 - Daytime observing at IRTF unique capability among IR platforms

Analysis of cometary spectra allows building a taxonomy based on molecular abundances

Summit of Maunakea, Hawai'i, USA (altitude 4.2 km)

Compositional studies of cometary ices require high resolution spectroscopy $(\lambda/\Delta\lambda > 1 \times 10^4)$

The Near-IR ($\lambda \sim 1-5\mu m$) affords key opportunities:

- Measurements of 7 10 "primary" (aka parent) volatiles (H₂O, C₂H₂, CH₄, C₂H₆, CO, H₂CO, CH₃OH, HCN, NH₃, OCS)
- Use of up-to-date HITRAN database to model telluric transmittances
- Direct detection of H₂O through non-resonant fluorescence
- OH Prompt emission (OH*): Proxy for H₂O abundance and spatial distribution
- Unique sounding of symmetric hydrocarbons (e.g., CH₄, C₂H₂, C₂H₆)
- Efficient measure of rotational temperatures (T_{rot})
- Spin temperatures (T_{spin}) for species w/ symmetric H-atoms (H₂O, CH₄, etc)
- Isotopic abundance ratios (HDO/H₂O, CH₃D/CH₄, etc.)
- Small (sub-arcsecond) pixels favor detection of primary volatiles (native ices; i.e., released directly from the nucleus)

Spatial-spectral frames: A - B differences

 v_1 Q-branch

H₂CO in C/2002 T7 (LINEAR), UT 2002 May 05 (CSHELL/IRTF, single order legacy instr.; "traditional" beam positions)

C/2004 Q2 (Machholz), UT 2005 Jan 19 (NIRSPEC/Keck, six orders)

- Discovered 2013 Nov 12 (Oukaimeden Obs/Marrakech, Morocco); perihelion 2014 Sep 28; a₀ = 55000 AU so Oukaimeden is a dynamically new or at least extremely long-period comet from the Oort cloud
- ➤ NIRSPEC on UT 2014 Sept 5 6
 - Eight trace parent volatiles (C₂H₂, CH₄, C₂H₆, CO, H₂CO, CH₃OH, HCN, NH₃) were measured simultaneously with H₂O, using three instrument settings (KL1, KL2, MWA)
 - This simultaneity overcomes sources of systematic errors (e.g., slit loss correction, potential temporal variability in gas production & outflow)
 - Observations were limited to the last \sim 75 minutes of the night
- ➤ CSHELL on UT 2014 Sept 11 13
 - All observations were after sunrise so during daytime
 - Detections limited to two settings, simultaneously measuring CO & H₂O on all dates

M. DiSanti, Carbon in the Solar System, 2018 April 26

Sample L-band Spectra of C/2015 V5 (NIRSPEC)

M-band Spectra
(CO & H₂O)

NIRSPEC

CSHELL

H₂O Production in C/2015 V5

Q(H₂O) α R_h^{-1.1+1.0} (relatively flat); Slope and Q are consistent with SOHO/SWAN, w/much larger FoV, between R_h = 1.1 and 0.625 AU (Combi+ 2018 Icar 300:33)

=> Relatively localized release of H₂O (from nucleus or innermost coma)

C/2013 V5: Evidence for Compositional heterogeneity Sep 05 Sep 06

KL1 order 23: λ ≈ 3.32 − 3.37 μm

Sep 05 Sep 06

KL1 order 22: $\lambda \cong 3.47 - 3.52 \mu m$

Note: Much stronger C₂H₆ and moderately stronger CH₃OH on Sep 06

Compositional heterogeneity (cont'd)

Compositional heterogeneity (cont'd)

Additional "Snapshots" of Abundances in C/2015 V5

Spatial Profiles of H₂O, organics, and dust

Summary of Results for C/2013 V5 (Oukaimeden)

- $ightharpoonup H_2O$ production was fairly flat between \sim 0.8 and 0.7 AU pre-perihelion. Agreement with SOHO/SWAN all-sky observations of the Ly- α coma.
 - Q(H₂O) was larger by 42±15 % on Sep 06 compared with Sep 05
- ➤ Overall, parent volatiles were depleted compared with their median values among comets. Exception: NH₃ was "normal"
- $ightharpoonup C_2H_6$ was severely depleted on Sep 05 & tracked H_2O spatial profile => association w/ "polar" (H-bonded) ice?; less depleted on Sep 06, spatially distinct from $H_2O => C_2H_6$ was sequestered in a distinct (a-polar) phase of ice(?)
 - Q(CH₃OH) increased by 1.9 ± 0.2 (by $51\pm35\%$ wrt H₂O)
 - Q(C₂H₆) increased by 2.7 ± 0.3 (!!) (by $87\pm23\%$ wrt H₂O)
- Implications for interstellar [H-atom addition to C_2H_2 (\rightarrow C_2H_6), CO (\rightarrow CH₃OH) on grains] versus nebular (gas-phase) chemistry
 - Compositional studies have since become more addressable...our study of C/2013 V5 would definitively have been more complete if we'd had....

Current/Future IR Observational Prospects

- NIRSPEC upgrade (pending)
 - Install a modern 2K x 2K H2RG detector array, retain cross-dispersed capability
- New spectrograph at the IRTF (iSHELL) (Rayner et al. 2016 SPIE 9908:1) / CSHELL replacement beginning October 2016
 - 2K x 2K array detector, cross-dispersed; has IR slit-viewer (fr. SpeX)
 - Daytime observing capability w/ $\lambda/\Delta\lambda$ up to \sim 70,000 ($^{\sim}$ 40,000 matches 0.7" seeing)
 - Serial coverage of comets to small heliocentric distances => addresses observational biasing associated with measurements at a single R_h
 - Six comets measured in 2017A semester, one (so far) in 2018A, five more comets targeted for 2018B, ending with 46P/Wirtanen (dedicated campaign time at IRTF)

iSHELL: ala SpeX, but w/much higher $\lambda/\Delta\lambda!$

Bridging toward the future: The need for serial measurements of comets (aka over a range of heliocentric distances, R_h)

Most compositional studies are "snapshots" (single R_h , or over a very limited range in R_h) e.g., H_2CO offers a case in point...this introduces a **bias** when interpreting compositions

There are relatively few measurements at multiple R_h . Comet ISON in particular provided a unique opportunity for serial measurements! However, do observed changes in abundances of some species (especially H_2CO , NH_3 , HCN) suggest compositional heterogeneity, or is release from increasingly heated (ice- or refractory-dominated) grains important? **iSHELL will enable serial studies** of comets to small R_h !

M. DiSanti, Carbon in the Solar System, 2018 April 26

Acknowledgements

Photo: K. Fast (NASA/HQ), Feb. 24, 2013

<u>Thanks to</u>: The NASA Planetary Astronomy/Solar System Observations Programs, the NASA Planetary Atmospheres/Solar System Workings Programs, the NASA Astrobiology Institute, the National Science Foundation